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Multispectral remote sensingMultispectral remote sensing
Some recent instruments (satellite based)

Landsat mission:
•Multi-Spectral Scanner (MSS) – 4 bands

•Thematic Mappers – 7 bands

Terra:
•Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) – 14 bands

•Moderate Resolution Imaging Spectrometer (MODIS) – 36 bands

EO-1:
Hyperion – 220 bands

Advanced Land Imager (ALI) – 10 bands
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Characteristics of sensor Characteristics of sensor 
measurementsmeasurements

Sizable acquired data at different resolutions

Missing/erroneous data

Non-stationarity

Multispectral/hyperspectral

High-resolution (as low as 1m)

Correlated channels

Spatial dependencies
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ObjectivesObjectives
Data exploitation for analysis and interpretation:

Coherent & composite image by sensor Fusion

Enhanced resolution of fused data by Optimal Estimation

Parsimonious and flexible representation of non-stationary 
data by Statistical Transformations

Processing guidelines:
Memory efficiency

Real-time implementation

FPGA compatible algorithms

Minimize communication burden
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Special Sensor Microwave/Imager 

Problem: Jointly exploit channels for resolution enhancement

The SSM/I instrumentThe SSM/I instrument
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Problem FormulationProblem Formulation
The channel measurements Y are given as:

where
G = The antenna gain function
X = The true underlying  temperature field
E = Measurement error

Assuming Gaussian model for X and E,
with Bayesian Estimation we have:

P = a priori Covariance Matrix of X
R = a priori Covariance Matrix of E

= +Y GX E

1 T 1 1 T 1ˆ ( )− − − −= +X P G R G G R Y



Hamid Krim, ESTC 2003Hamid Krim, ESTC 2003

Formulation for SSM/IFormulation for SSM/I
Format stationarized vertical polarization channels at each 

frequency from the seven available data channels

Vectorize 2-D data into 1-D column vectors

Append all channels

85 85Vec[ ]=Y Y

T
85 37 22 19[ , , , ]=Y Y Y Y Y

85V

37V

22V

19V

85V

37V

22V

19V

Direction of swath

Column vector Y
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Receive Antenna modelReceive Antenna model
Hypotheses

Local stationarity over 10x10 pixel patches in the 85V channel

Estimated field finer in resolution 4 times in each dimension 
than the 85V channel i.e. pixel width = 12.5/4 = 3.125km

Each of the four channels has a jointly binomial gain pattern

Example:  Gain pattern for the 85V channel (note implied 
overlap along track)
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Empirically estimate a priori covariance matrices

P of the field

-Challenge from non-stationarity

R of the measurement  error

-Use as weights on channels

Construction of statistical modelsConstruction of statistical models
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Assumptions and method
Use 85V channel 

-Closest in resolution to underlying field

-Channel with least overlap of footprints

-No overlap in scan direction

Windowing

-Local stationarity in general

-Global stationarity achieved for locally detrended data

-Mean normalization over 8x8 shifting window

Field prior covariance modelField prior covariance model
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Assumptions and method
Compute statistics for along scan direction

-Fits to exponential model in the anti-diagonal

-Only two parameters required to define model
( ) * e x p ( | | )C d A B d=

Field prior covariance modelField prior covariance model
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Assume isotropy

Mathematical model for vectorized data of NxN
( , ) ( )P x y C d= =

2 2( ( / / ) ( / / )C x N y N x x N y y N= − + − − +              
2 2* e x p { * ( / / ) ( / }/ )A B x N y N x x N y y N= − − + − − +              

Field prior covariance modelField prior covariance model
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Observe characteristics of sample data to 
determine what input channel(s) provide 
statistical data that is closest to the underlying 
field and thus has minimum overlap

Apply statistical normalization (e.g. detrend) to 
selected data to guarantee the imposed 
assumptions of stationarity

Compute the covariance matrix for the relevant 
input data points

Construct a field covariance model

Using model, solve for field estimate of a  
specified swath length.

More Generally…More Generally…
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Assumptions
Zero mean additive white gaussian noise

Non-correlation and equal variance for given channel

For each channel covariance matrix is diag.

Interpret the error variance as a weighting factor

Higher error variance for a particular channel implies 
less reliance on the channel in estimating  underlying 
field 

Impose 

2σ I

2 2 2 2
4 3 2 1σ σ σ σ> > >

Error prior covariance modelError prior covariance model
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Final Covariance Matrix

Zeros indicate assumption of independence of measurement errors 
of various channels

Note size dependency on field size for different channels

Prior of measurement errorPrior of measurement error
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Direct method experimentDirect method experiment

Estimated field X

85V

19V

22V

37V

1 T 1 1 T 1ˆ ( )− − − −= +X P G R G G R Y
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Take Cholesky Factorization of Field  priori covariance matrix

A is a full rank Upper Triangular matrix

Let

Rewrite problem statement

The estimation solution now is:

PrePre--whitening manipulationwhitening manipulation……

T=P AA

1
W

−=F A

1
W W
−= +Y GF F X E

T 1 1 T 1
W W W W W

ˆ ˆ ( )− − −= = +X F X I G R G G R Y

1
W W

−=G GF
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The matrix      is in effect a whitening filter.

Inverse filter matrix Impulse response 
of whitening filter

We use        i.e.       to “recolor” the estimated quantity  as the final 
step in  estimation process 

PrePre--whitening transformwhitening transform

WF

1
W
−F A
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Take advantage of sparseness resulting from wavelet transform

Simplified  choice of a suitable wavelet with pre-whitening in place

Level-1 wavelet decomposition of the estimated quantity 
(reformatted as 2-D image) using a 2-D Haar wavelet.

Wavelet/Sparse preconditioningWavelet/Sparse preconditioning
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Thus, application of a wavelet transform  to the 
vectorized white data

- Threshold and preserve significant portion of information

- Data size reduction  by a factor of 4

Defining

We have

Wavelet preconditioningWavelet preconditioning

l l W=X W X T
l W l=G G W

T 1 1 T 1
l l W l l l

ˆ ˆ ( )− − −= = +X W F X I G R G G R Y
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Haar wavelet transform

Size reduction of  matrices      and      by a factor of 4 in both 
dimensions

Significant decrease in computational  cost in inverting

Compact representation reduces communication burden for satellites 
with a small added overhead from preconditioning transforms

Effect of preconditioningEffect of preconditioning

WX̂ l W
ˆW X

lGlX

T 1 1
l l( )− −+I G R G



Hamid Krim, ESTC 2003Hamid Krim, ESTC 2003

Estimation based on 
Decorrelating input channels

Combination of decorrelated channels

Reconditioning of combined preconditioned estimation

Consider,

RealReal--time implementationtime implementation

T 1 1 T 1
l l W l l l

ˆ ˆ ( )− − −= = +X W F X I G R G G R Y

T 1 1 T 1
l l l( )− − −= +M I G R G G R
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Note: only 85V and 37V used for this portion for simplified analysis

RealReal--time implementationtime implementation

T 1 1 T 1
l l l( )− − −= +M I G R G G R
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Observations:

Input regridding by insertion of zero points

RealReal--time implementationtime implementation

[ ]85 37 .....=M M M

l
ˆ =X MY

[ ]
85

85 37 37 85 85 37 37... . ...
...

 
 = = + + 
  

Y
M M Y M Y M Y
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Modified input:

Modified operators are channel filters

Resulting estimation process:

RealReal--time implementationtime implementation

85 37, ,...Z Z

l 85 85 37 37 ....∴ = + +X F Z F Z

l 85 85 37 37 ....∴ = ∗ + ∗ +X f Z f Z
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Block diagramBlock diagram
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Simulation resultSimulation result

Comparison of original input 85GHz data with 
reconstructed estimation fusion result
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ConclusionsConclusions
An optimal Bayesian estimator for data/sensor An optimal Bayesian estimator for data/sensor 
fusion developedfusion developed
Empirical analytical models may be constructed and Empirical analytical models may be constructed and 
utilized in improving computing efficiencyutilized in improving computing efficiency
Further improvement and potential nearFurther improvement and potential near-- or real time or real time 
implementationimplementation
Simplified and adapted algorithmic architecture for Simplified and adapted algorithmic architecture for 
Hardware transitioningHardware transitioning
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Efficient adaptation to non-stationarity
Real-time empirical estimation of covariance model 

parameters

Input data from 85V channel may be used on account of least 
overlap direction and isotropy

Prediction based on feedback from estimated underlying field 

Adapting to instrumental errors
Adaptively control the variance of error measurement for 

every channel in the error covariance matrix 

Investigate other data (e.g. Hyperion data)

Future WorkFuture Work
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Thank You!


